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ABSTRACT

Soil moisture anomalies within the root zone (roughly, soil depths down to;0.4m) typically persist only a few

months. Consequently, land surface–related climate predictability research has often focused on subseasonal to

seasonal time scales.However, in this study ofmultidecadal in situ datasets and land data assimilation products, we

find that root zone soil moisture anomalies can recur several or more seasons after they were initiated, indicating

potential interannual predictability. Lead–lag correlations show that this recurrence often happens during one

fixed season and also seems related to the greater memory of soil moisture anomalies within the layer beneath the

root zone, withmemory on the order of several months to over a year. That is, in some seasons, notably spring and

summer when the vertical soil water potential gradient reverses sign throughout much of North America, deeper

soil moisture anomalies appear to return to the surface, thereby restoring an earlier root zone anomaly that had

decayed. We call this process ‘‘reemergence,’’ in analogy with a similar seasonally varying process (with different

underlying physics) providing winter-to-winter memory to the extratropical ocean surface layer. Pronounced

spatial and seasonal dependence of soil moisture reemergence is found that is frequently, but not always, robust

across datasets. Also, some of its aspects appear sensitive to spatial and temporal sampling, especially within the

shorter available in situ datasets, and to precipitation variability. Like its namesake, soil moisture reemergence

may enhance interannual-to-decadal variability, notably of droughts. Its detailed physics and role within the

climate system, however, remain to be understood.

1. Introduction

Long-term (multiyear) droughts occur worldwide,

particularly in semiarid to arid regions such as the

southwestern United States, the Sahel, and Australia

(Cheng et al. 2016; Evans et al. 2017; Held et al. 2005). In

North America, the recent California drought (2012–15)

resulted in billions of dollars of economic losses and

severe stress on ecosystem productivity (Asner et al.

2016; Howitt et al. 2015). Over the past century the U.S.

Great Plains has experienced both costly droughts and

extended pluvial periods (Livneh and Hoerling 2016).

Improved understanding of mechanisms behind the

potential predictability of long-term phenomena medi-

ated by the land surface, including drought, may better

inform natural resource planning decisions.

Drought is triggered by a substantial precipitation

deficit that can even develop in amatter of days to weeks

(Hoerling et al. 2014; Mo and Lettenmaier 2015), with

surface feedbacks including antecedent conditions sub-

sequently intensifying and prolonging the resulting soil
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moisture deficit (Lyon and Dole 1995; Oglesby and

Erickson 1989; Otkin et al. 2016; PaiMazumder and

Done 2016). Soil moisture and precipitation feedbacks

in the Great Plains are asymmetric, with droughts driv-

ing higher precipitation variability than floods (Schubert

et al. 2008). More generally, since soilmoisture anomalies

persist longer than atmospheric moisture anomalies, land

processes contribute to both subseasonal (Koster et al.

2010, 2011) and seasonal (Guo et al. 2011; Kumar et al.

2014b; Paolino et al. 2012) climate predictability. Realistic

soil moisture initializations also improve seasonal stream-

flow and soil moisture forecasts (Orth and Seneviratne

2013), because of time-integration effects of soil moisture

and snow processes at watershed scales (Wood et al. 2016).

‘‘Soil moisture memory’’ refers to the degree of per-

sistence (highmemory) or dissipation (lowmemory) of a

soil moisture anomaly through time (Koster and Suarez

2001). Numerous studies have found that memory in the

surface soil ranges between about 2 and 4 months, both

in observations (Amenu et al. 2005; Dirmeyer et al.

2016; Entin et al. 2000; Nicolai-Shaw et al. 2016; Orth

and Seneviratne 2012; Vinnikov et al. 1996; Wu et al.

2002) and climate model simulations (Delworth and

Manabe 1988; Koster and Suarez 2001; Seneviratne and

Koster 2012; Seneviratne et al. 2006; Wu and Dickinson

2004). Theoretical estimates from soil water balance

models yield similar values (Ghannam et al. 2016; Orth

et al. 2013; Seneviratne and Koster 2012). This memory

time scale is spatially dependent, and dry regions may

have higher memory (;3 months) than wet regions

(;1 month) (Rahman et al. 2015).

However, if surface soil moisture memory is on the or-

der of months, then what accounts for long-term droughts

andpluvials persisting beyond a season, even years, seen in

both instrumental and paleo-proxy climate datasets and in

model simulations (Ault et al. 2013; Cook et al. 2016; Cook

et al. 2004; Herweijer et al. 2007; Kam and Sheffield 2016;

Langford et al. 2014; Schubert et al. 2004; Seager et al.

2005; Wu and Kinter 2009)? One explanation is that at-

mospheric teleconnections from ocean basins (Hoerling

et al. 2014; Nicolai Shaw et al. 2016; Routson et al. 2016;

Wu and Kinter 2009), including the tropical Pacific (Cole

et al. 2002; Hoerling andKumar 2003; Schubert et al. 2008;

Seager et al. 2005) and the extratropicalAtlantic (McCabe

et al. 2004; Schubert et al. 2004), drive long-termvariations

in precipitation. Even without oceanic forcing, extended

periods with substantial precipitation anomalies could

occur randomly through natural variations of weather

alone (Hasselmann 1976; Langford et al. 2014; Stevenson

et al. 2015) despite its generally shortmemory (Chikamoto

et al. 2015; Schubert et al. 2016; Seager et al. 2015). While

historical ‘‘megadroughts’’ (Woodhouse and Overpeck

1998) may additionally be forced by changes in volcanism

and solar insolation (Seager et al. 2007; Woodhouse and

Overpeck 1998), they too likely reflect internal climate

variability (Ault et al. 2018; Coats et al. 2016; Seager et al.

2007, 2008).

Even so, observational and model studies have con-

sistently identified multiseasonal to multiyear memory

in deep soil moisture and groundwater, which could also

contribute to long-term climate predictability including

drought (Amenu et al. 2005; Bellucci et al. 2015;

Bierkens and van den Hurk 2007; Entekhabi et al. 1996;

Xia et al. 2014) and pluvials (Schubert et al. 2008). For

example, the memory time scale of Illinois soil moisture

anomalies below about 1-m depth is close to a year

(Amenu et al. 2005). Soil moisture stored in the wet

season supports plant growth in the subsequent dry

season (Huete et al. 2006; Markewitz et al. 2010; Yan

and Dickinson 2014). Groundwater might impact

evapotranspiration through upward soil water flux (Fan

and Miguez-Macho 2010; Miguez-Macho and Fan 2012)

so recycling of evaporative flux could contribute to

multiyear persistence in rainfall anomalies (Bierkens

and van den Hurk 2007). Mahanama et al. (2012) found

that 1 October initialization of soil moisture contributes

to skill in streamflow forecasts at longer lead times, such

as the following spring and summer seasons. Schubert

et al. (2004) suggested that Great Plains drought is

partly a consequence of year-to year ‘‘deep’’ soil mem-

ory. Analyses of megadroughts have also suggested that

land surface memory must significantly contribute to

their persistence (Ault et al. 2018; Cook et al. 2016).

These studies all suggest that land surface memory is

effectively greater than just a few months.

What seems to have received less attention is just how

longer memory within the deep layer is communicated

to the shorter-memory surface layer to sustain climate

anomalies like long-term drought. Figure 1 both illus-

trates this issue and a potential explanation, showing a

vertical cross section of the evolution of anomalous soil

moisture during the 1988–89 Illinois drought, based on

Illinois Climate Network (ICN) in situ data (Hollinger

and Isard 1994). The spring 1988 precipitation deficit

induced a dry surface soil moisture anomaly that prop-

agated downward during summer 1988. While anoma-

lies to a depth of;40 cm decayed over a few months, as

expected, beneath this depth the dry anomaly persisted

throughout the following winter and spring. In spring

1989, even though precipitation was slightly above nor-

mal, surface soil moisture anomalies again becamemore

negative. Interestingly, only afterward, in April, did a

negative precipitation anomaly develop. Could the deep

soil moisture anomaly have had any role in these surface

changes, such as by driving anomalously dry surface soil

conditions to recur in the second year?
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This example is reflected in the overall ICN statistics.

Figure 2a shows the autocorrelation function of Illinois

springtime root zone soil moisture seasonal anomalies

for 1985–2004. Here and in the remainder of this paper,

we define the ‘‘root zone’’ as spanning depths of 0–0.4m,

the soil layer where typically two-thirds or more of the

plant roots reside and also the layer with the highest

seasonal variability (Ghannam et al. 2016; Zeng 2001).

The details of the calculation are deferred to section 3;

they are not necessary to grasp the main point here. As

expected from a first-order Markov process, the auto-

correlation function initially decays exponentially

toward zero, with an e-folding time scale of about

4 months, consistent with previous studies discussed

above. However, for longer lags the autocorrelation

does not remain near zero but instead increases to be-

come significantly positive again for leads of 13–

15 months. That is, even as Illinois anomalous root zone

soil moisture was uncorrelated from spring to the sub-

sequent fall, it was significantly correlated from one

spring to the next.

In fact, the annual cycle of the autocorrelation func-

tion (Fig. 2c) shows that while root zone soil moisture

anomalies initially last only a few months, they recur in

the subsequent spring (diagonal line), no matter the

base season of the autocorrelation function. Yet no

significant recurrence is apparent for precipitation

(Figs. 2b and 2d). Together with Fig. 1, these results

suggest that some springtime process might have par-

tially restored prior soil moisture anomalies within the

root zone by bringing back the memory of the previous

year stored in the soil layer below. We call such a sea-

sonally dependent process soil moisture reemergence,

in analogy with a similar seasonally varying process

(albeit with different underlying physics) that provides

long-term memory to thermal anomalies within the

surface layer of the extratropical oceans (Alexander and

Deser 1995; Alexander et al. 1999; Deser et al. 2003) and

appears responsible for a substantial fraction of the vari-

ance of the Pacific decadal oscillation (PDO;Mantua et al.

1997; Newman et al. 2016).

Our immediate aim in this paper is to begin de-

veloping the following soil moisture reemergence hy-

pothesis: deep layer soil moisture acts as a memory

reservoir with significantly greater memory, ranging

from several months to a year or longer (Amenu and

Kumar 2008), than is typically present either in the root

zone or in daily weather. Deep anomalies can interact

with root zone soil moisture. If this interaction exists

year-round, it may be expected to generally lengthen

root zone memory time scales. However, when the

connection is mediated by seasonally varying processes

such as changes in snow cover, vegetation, and land–

atmosphere coupling, then the root zone memory will

generally be shorter except during seasons when the

interaction with the deeper layer is pronounced, leading

to soil moisture reemergence.

We would like to start by investigating how obser-

vations may constrain the proposed reemergence pro-

cess and its possible physical mechanisms, examining

the seasonal, regional, and depth dependence of soil

moisture memory and its relationship to precipitation.

This means going beyond earlier analyses of soil mois-

ture memory, by determining the autocorrelation

function of anomalous soil moisture over time intervals

as long as two years. Unfortunately, the long-term,

in situ soil moisture observations needed to study

this phenomenon are limited. Therefore, much of this

study involves evaluating long-term soil moisture

memory and potential reemergence in various land data

FIG. 1. Evolution of Illinois soil moisture standardized anomalies during and after the 1988

drought, averaged over Illinois Climate Network (ICN) observations. Contour interval is 0.25

standard deviation. Also shown are the standardized precipitation anomalies (bars) for

each month.
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assimilation products. These products have their own

well-known limitations, since they are derived from

observed atmospheric forcing of the current generation

of land surface models, but they yield results that ap-

pear reasonable on large scales (Dirmeyer et al. 2016).

Since it is important to put the statistical analysis in a

physical context, we first briefly introduce some po-

tential mechanisms in section 2. Then, after summariz-

ing all available soil moisture ‘‘datasets’’ that we

analyze in section 3, the results of our analysis are

presented in section 4. Finally, section 5 presents a

summary and evaluation of our findings, including

noting limitations of using datasets that are largely

model-based and suggesting some avenues for further

investigation.

2. Hypothesized soil moisture reemergence
mechanisms

We first present some potential soil moisture ree-

mergence mechanisms, in the context of the conceptual

two-layer soil system model (Fig. 3):

FIG. 2. Autocorrelation function of anomalous Illinois root zone (0–0.4-m depth) soil moisture and precipitation.

Indices are determined from statewide averages of Illinois ClimateNetwork (ICN) observations for 1985 to 2004, as

described in the text. Anomalies are departures from themonthly seasonal cycle, smoothedwith a 3-month running

mean. (a),(b) Autocorrelation of springtime root zone soil moisture and precipitation, respectively. In both panels,

autocorrelation lag is measured from the base FMA (February–April) anomalies; so, for example, a lead of 6

months represents the correlation between FMA and the subsequent ASO season. Dashed blue lines show the

observed autocorrelation functions; solid black lines show exponential decay, where the decorrelation (e-folding)

time scale is determined from a fit to the entire autocorrelation function. The red dots indicate values that are

significantly different (95% confidence interval; see section 3c) from zero. (c),(d) Annual cycle of the autocorre-

lation function for 3-month running mean root zone soil moisture and precipitation anomalies, respectively. The

month ordinate indicates the time of the base season, and the abscissa shows the lead/lag. For example, the (213,

MAM) value in (c) indicates the correlation of MAM root zone soil moisture anomaly with the previous year’s

FMA root zone soil moisture anomaly (i.e., 13 months earlier); the (14, FMA) value (magenta oval) indicates the

correlation of FMA root zone soil moisture anomaly with the root zone soil moisture anomaly in the next year’s

AMJ season (i.e., 14 months later). The diagonal yellow lines therefore represent correlations with the previous

FMA (subsequent AMJ) seasons, for any lead/lag. Correlation maxima along these lines are suggestive of re-

emergence. Note that both magenta ovals represent the 14-month lag correlation between FMA and the following

AMJ (one oval forward and the other backward). The horizontal black dashed lines represent the location of the

values in the blue dashed lines in (a) and (b). Note that in this and all subsequent plots, vertical dashed gray lines are

drawn at 6-month intervals, and stippling represents the 95% confidence interval.
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dS
1

dt
5P2ET2SR1T , (1)

dS
2

dt
52T2D , (2)

where S1 and S2 are root zone (0–0.4m) and deep layer

(0.4–2m) soil moisture, respectively. Here, we restrict

our ‘‘deep layer’’ definition to only 2-m depth because

this is where observations and data are readily available,

but clearly soil and the water table below this depth may

be relevant. Also, P is precipitation, ET is evapotrans-

piration, SR is surface runoff, and D is base flow and

drainage; T represents coupling between the root zone

and deep soil layers, defined to be positive when water

flows from the deep soil to the root zone.

Darcy’s law [(3)] governs water movement within a

soil–plant–atmosphere continuous system as water

moves from high to low potential (Goldsmith 2013):

dS

dt
52KDc , (3)

where dS/dt is the rate of water flow (m s21) in the soil

system, K is hydraulic conductivity (m s21), and Dc is

change in total soil water potential per unit length; for

example, ›(csoil 1 z)/›z for water movement in the soil

system. Figure 4a shows the soil moisture climatology

and interannual variability from ICN data. The corre-

sponding soil water potential c in Illinois shows a re-

versal from high to low potential between the root zone

and deep layer in the late spring and summer seasons

(see Fig. S1 in the online supplemental material).

It is widely accepted that water can move upward

from the deep layer to the root zone following a soil

water (matric) potential gradient (Green and Ampt

1911), which could occur whenmean evapotranspiration

exceeds precipitation in the growing season (Huete et al.

2006; Kumar and Merwade 2011; Kumar et al. 2014a;

Markewitz et al. 2010; Sheffield et al. 2013; Yan and

Dickinson 2014); that is, ET2 P deficits are supplied by

the soil moisture storage available from previous sea-

sons. Upward moisture fluxes on the basis of soil mois-

ture gradients have been observed in nature (Scanlon

1992) and corroborated by models (Scanlon and Milly

1994), although these types of assessments have not

been done over long periods or large areas. Examples of

physical mechanisms that might drive water upward

include 1) hydraulic redistribution, which is water

movement fromdeepwet soil to dry shallow soil through

the root system in the absence of transpiration demand

(Lee et al. 2005; Meinzer et al. 2004; Neumann and

Cardon 2012; Ryel et al. 2003; Ryel et al. 2002); 2) deep

root plant water uptake, where deeper-rooted plants can

access deep layer (and therefore higher memory) soil

water (Huete et al. 2006); and 3) a shallow groundwater

table position, which can contribute to the evaporative

demand through capillary rise especially during droughts

(Gao et al. 2017; Rizzo et al. 2018).

Figure 4b shows the climatology of various terms in

(1) from an offline land surface model simulation (CLM,

discussed later), which suggests that T constitutes a

major portion (brown shading) of P2 ET2 SR deficits

FIG. 3. A conceptual two-layer soil moisture model; see text for

more details.

FIG. 4. Physics of soil moisture reemergence: a demand-driven

hypothesis. (a) Soil moisture climatology, variability, and (P 2
ET)/P* climatology: color shading shows monthly climatology of

soil moisture in terms of percentage of saturation as a function of

depth from the surface to 2m. Line contours represent interannual

variability using an estimate of one standard deviation from the

ICN data. Bars shows P 2 ET climatology, normalized by annual

average precipitation, using LDAS data from CLM. (b) An esti-

mate of two major components: (P 2 ET 2 SR) and T, based on

data from CLM. Error bars show interannual variability using an

estimate of one standard deviation. Note the major contribution of

T in the summer season. Units are mm month21. P* is annual av-

erage precipitation.
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in the summer, as well as contributing to the recharge of

deep soil moisture during winter and early spring. Im-

portantly, there are no direct observations ofT; rather, it

can be inferred as a difference term between soil mois-

ture observations at two depths. Given a lack of long-

term, high-quality observations needed for T (ICN

notwithstanding), we must rely almost entirely on sim-

ulated soil moisture, which introduces uncertainty in the

magnitude of potential reemergence.

A ‘‘demand-driven’’ soil moisture anomaly re-

emergence hypothesis might then act as follows: the root

zone soil moisture anomalies contribute to deep layer

anomalies during the wet season when the atmospheric

supply exceeds the demand; that is,P2ET. 0. The deep

layer anomalies remain decoupled from atmospheric/

evapotranspiration processes during winter and early

spring because atmospheric demand is smaller than the

atmospheric supply. As a result, the deep layer soil mois-

ture has greater memory and smaller variability compared

to the root zone (Fig. 4a).As the surface soilmoisture dries

out in late spring and summer, the soil water potential

gradient reverses (i.e., the deep layers have higher soil

water potential than the surface), leading to moisture

transfer from the deep layer to the root zone.

It is also possible that reemergence can occur without

upward water movement. This alternative ‘‘anomaly-

propagation’’ hypothesis is illustrated in Fig. 5. Consider

first the case of a pre-existing wet deep layer anomaly (left

column). During the subsequent season, the rate of

downward water transfer to the deep layer would be re-

duced (i.e., there would be a negative T anomaly) because

of a smaller-than-normal matric potential gradient be-

tween the root zone and deep layers. This would result in a

net positive root zone soil moisture anomaly and an ap-

parent upward propagation of the prior deep layer

anomaly. Conversely, a dry deep layer anomaly would

imply a larger-than-normal matric potential gradient be-

tween the root zone and deep layers, a positiveT anomaly,

and again apparent upward propagation of the deep layer

anomaly (right column in Fig. 5b).

Clearly, both the proposed demand-driven and anomaly-

propagation hypotheses are quite sensitive to how T de-

pends upon all the other terms in (1), so the root zone

anomaly development is likely considerably more complex

than discussed here andmay act differently in the presence

of climate variability, surface heterogeneity, and land–

atmosphere coupling. This two-layer heuristic model also

oversimplifies the more complicated water movement

through the soil column, including interactions with the

aquifer below as well as lateral flow. How vegetation,

both through its seasonal cycle of growth and sensitivity

to soil moisture anomalies, impacts these mechanisms is

also likely important. Still, fundamental physics (the

Darcy law) and the observed matric potential gradients

together provide possible mechanistic explanations for

soil moisture reemergence.

Finally, K. Schaefer et al. (2007) suggested that

freeze–thaw processes can lead to soil temperature

FIG. 5. Physics of soil moisture reemergence: anomaly propagation hypothesis. Both panels depict the conceptual

two-layer soil model of Fig. 3, with anomalous soil moisture conditions and the total soil water potential (soil matric

potential and gravitational potential with reference at 2-m depth) with anomalous soil moisture in the deep layer

and (without loss of generality) climatological conditions in the root zone. (a) A deep layer wet anomaly would lead

to a smaller potential gradient between the root zone and the deep layer and consequently a reduced magnitude of

T, resulting in a wet anomaly developing in the root zone. (b) A deep layer dry anomaly would lead to larger

potential gradient between the root zone and the deep layer and consequently an increased magnitude of T, re-

sulting in a dry anomaly developing in the root zone. Numbers in the parentheses (X6 Y) show the total soil water

potential (meters of water) using ICN data for FMA season, whereX represents the climatological mean value and

Y represents one standard deviation of interannual variability. The hatched horizontal arrow in the deep layer

represents the transfer of memory from the previous season to the current season. Filled thick black arrows show

total water movement from root zone to the deep layer below. Filled thick red arrows show the drainage term. See

text for further explanation.
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reemergence in cold regions: during the winter, soil

temperature anomalies from the previous season are

stored below the frozen surface, and then reappear at the

surface during the subsequent thaw (also see Matsumura

and Yamazaki 2012). A similar mechanism (perhaps also

involving snowpack dynamics) might be relevant for

moisture anomalies as well.

3. Data and methods

a. Soil moisture datasets and processing

Table 1 lists all the hydrology/land surface model

datasets and in situ soil moisture measurements (and

their acronyms) used in this study, including their period

of record and their horizontal resolution. Below, we

briefly describe these datasets. Given the short re-

cords of in situ and satellite soil moisture datasets, our

methodology is limited to providing essentially a quali-

tative assessment of the ‘‘potential’’ existence of a re-

emergence phenomenon and its attributes, rather than a

quantitative assessment of its magnitude. In this context,

we focus on several multilayer soil moisture Land Data

Assimilation System (LDAS) datasets that include dif-

ferent land surface models (LSMs) driven by observed

meteorological forcing. This provides the longer records

needed to study interannual to decadal variability. Note

that LDAS datasets do not directly assimilate soil

TABLE 1. Datasets used in this paper. Note that some datasets cover more years than were used.

Dataset Years Forcing Notes

ICN: Illinois Climate Network 1985–2004 None (soil moisture measurements, using

neutron probe); Hollinger and Isard

(1994)

18 station average. Measurements are

13 monthly except 23 monthly in

growing season

ARM, SCAN, and SNOTEL

sites

Vary between

1998 and 2017

(see Fig. 13)

None (soil moisture measurements) Measurements are daily

VIC-highres: High-resolution

VIC (Livneh et al. 2015b)

1950–2010 Hydrologically consistent dataset for the

conterminous United States, gridded at

1/168 latitude–longitude, derived from

daily temperature and precipitation

observations from approximately

20 000 NOAA Cooperative Observer

(COOP) stations (Livneh et al. 2013)

Three-layer (variable depth) variable

infiltration capacity (VIC) model,

run at 1/168 resolution in 3-hourly

increments

VIC-lowres: Coarse-resolution

VIC (Livneh and Hoerling

2016)

1950–2010 Same as above Three-layer fixed depths (VIC) model,

run at 1/28 resolution in 3-hourly

increments

CPC: Climate Prediction

Center

1950–2010 Monthly data over the globe from CPC

PrecipitationReconstruction over Land

(Chen et al. 2002) and CPC Global

Land Surface Air Temperature

Analysis (Fan and van den Dool 2004)

One-layer hydrological model (‘‘leaky

bucket’’) with spatially constant

parameters (Huang et al. 1996; van

den Dool et al. 2003). Constant

depth 1.6m, run at 1/28 resolution,
monthly

CLM 1950–2010 CRU3.2 1 NCEP R1 temperatures/

precipitation (CRUNCEP; Viovy and

Ciais 2011)

NCAR Community Land Model

(CLM) v4.5, 10 layers, constant

depths, run at 18 resolution, 6-hourly
increments (Oleson et al. 2013)

Noah (NLDAS-2) 1979–2010 NLDAS-2 forcing fields (NARR/PRISM,

plus various corrections)

Landmodel used inNCEPoperational

models. Four layers, constant

depths, 1/88 resolution, daily
Mosaic (NLDAS-2) 1979–2010 Same as for Noah Land model originally used in NASA

GCM; 1/88 resolution, daily
GLEAM (version 3) 1980–2015 Remote sensing–based soil moisture observations are assimilated using 3-layer soil

moisture model in the Global Land Evaporation Amsterdam Model, 1/88 reso-
lution, daily (Martens et al. 2017)

SMERGE 1979–2015 Merging of satellite-based surface soil moisture with Noah (NLADS-2) root zone

soil moisture data, 1/48 resolution, daily (Crow and Tobin 2018)

MERRA2 1980–present Daily precipitation totals were corrected

using NOAA CPC unified gauge-based

analysis (Chen et al. 2008) in the

coupled atmosphere–land reanalysis

system (Reichle et al. 2017)

Catchment hydrology model (Koster

et al. 2000), root zone thickness 1m,

1/28 resolution, 3-hourly
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moisture observations, however. Another important

caveat is that the phenomenon of reemergence has not

been directly built in to any of the models, nor has it

been explicitly evaluated before, such that some models

may be more or less suitable to simulate reemergence

and that any characterization of reemergence from these

models is likely to contain artifacts related to parame-

terization and discretization dependences.

We examined three LDAS methods with at least 60

years of data each. First, we used the Variable In-

filtration Capacity model (VIC; Liang et al. 1994) in two

configurations: 1) a hydrologically consistent high-

resolution (1/168) implementation, called VIC-highres,

calibrated to streamflow observations (Livneh et al.

2013) and therefore providing an observationally con-

strained representation of soil moisture interactions

relative to other model datasets; and 2) a lower-

resolution (1/28), spatially uniform soil depth im-

plementation ofVIC, calledVIC-lowres, used by Livneh

and Hoerling (2016) to simulate drought at scales com-

parable to GCMs, providing a useful contrast to the

VIC-highres concerning model spatial resolution and

calibration effects. Both use a three-layer soil moisture

scheme, but VIC-highres uses spatially varying thick-

nesses dependent on its streamflow calibrations. Both

are driven by gridded meteorological forcing data from

approximately 20 000 NOAA Cooperative Observer

stations (Livneh et al. 2013, 2015b), and both include a

seasonally varying vegetation phenology and resolve

both water and energy fluxes for the land surface and

vegetation canopy layers. Additional experiments were

made with the VIC-lowres in which the forcing is mod-

ified by fixing either precipitation or temperature to

their climatologies (Livneh and Hoerling 2016) to ex-

plore the sensitivity of our results to anomalous mete-

orological forcing.

The VIC is contrasted with the Community Land

Model version 4.5 (CLM; (Oleson et al. 2013), an LSM

with more sophisticated soil–plant–atmosphere inter-

action. The CLM has a coarser (18 3 18) spatial resolu-
tion but also has a 10-layer fixed depth soil moisture

scheme down to 3.5-m depth. It solves the one-

dimensional Richard’s equation within each soil col-

umn, which can share several plant functional types to

account for vegetation heterogeneity at the surface.

Plant functional types describe vegetation structure in

terms of leaf properties, canopy heights, and root dis-

tributions (Bonan et al. 2002; Oleson et al. 2013). CLM

also has a prognostic seasonal cycle of vegetation evo-

lution, emergence and senescence of leaves, and vege-

tation heights based on the Biome-biogeochemical cycle

model (Thornton andRosenbloom 2005; Thornton et al.

2002). The soil moisture dataset is then generated by

forcing the CLM with meteorological observations

based on the Climatic Research Unit (CRU)–National

Centers for Environmental Prediction (NCEP) dataset,

for the years 1901–2010. Despite differences between

VIC and CLM, they produce similar snowpack dynam-

ics (Chen et al. 2014) and share common physics as-

sumptions: a two-stream canopy radiative transfer

scheme, time-varying albedo, liquid water refreeze, and

water transfer between snow layers.

Sensitivity to LDAS models is explored by analysis of

two datasets from phase two of the North American

Land Data Assimilation System (NLDAS-2) (Xia et al.

2012, 2014) based on the Noah and Mosaic models,

covering the period since 1979. The Noah model has

four soil layers with thicknesses of 10, 30, 60, and 100 cm.

It provides land boundary conditions in the NOAA/

NCEP coupled Climate Forecast System (Ek et al.

2003). Mosaic has three soil layers with thicknesses of

10, 30, and 160 cm, with the first two together comprising

the root zone (Koster and Suarez 1996). Since both

models receive identical observed atmospheric forcing,

differences between these two datasets arise frommodel

differences including their soil moisture parameteriza-

tions. We also examined the NLDAS-2 dataset based on

the VIC model, but show the results obtained with the

VIC-highres dataset instead since the differences have

relatively minor impact on our results, and VIC-highres

covers a longer period.

To provide a simplistic LSM for comparison, we used

the Climate Prediction Center (CPC) soil moisture

dataset, which uses observations to force a single-layer

‘‘leaky bucket model’’ (Huang et al. 1996; van den Dool

et al. 2003) with an effective depth of 1.6m. In essence,

we have incorporated soil moisture datasets from a wide

range of model parameterizations, from the most sim-

plified with no vertical layers to complex (interactive

vegetation phenology; CLM) and hydrologically cali-

brated (VIC) models.

More recently, remote sensing–based surface soil

moisture observations have been assimilated to produce

daily root zone soil moisture values at higher spatial

resolution for the 1980–2015 period. Two such products

are 1) the Global Land Evaporation AmsterdamModel

(GLEAM), which assimilates soil moisture observations

from different passive and active C- and L-band mi-

crowave sensors from European Space Agency Climate

Change Initiative (ESA-CCI), using a three-layer water

balance model where root zone depth is a function of

land cover type; and 2) SoilMERGE (SMERGE), which

was developed based on merging an NLDAS land sur-

face model (Noah) dataset with the ESA-CCI satellite

retrievals (Crow and Tobin 2018), using an exponential

filter to convert surface soil moisture (0–5 cm) to root
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zone soil moisture (0–40 cm) (Tobin et al. 2017). In ad-

dition, we included the Modern-Era Retrospective

Analysis for Research and Applications version 2

(MERRA-2; Gelaro et al. 2017), a reanalysis product

using observed precipitation to force the coupled land–

atmosphere system, allowing near-surface temperature

and humidity to be consistent with the precipitation

correction and providing comparable performance to

the corresponding LDAS-type simulations (Reichle

et al. 2017). Finally, we determined an ensemble mean

from all the above datasets for the common 1980–

2010 period.

Given LSM/LDAS limitations, we might prefer to

focus on in situ measurements, but such records are

generally not over ;20 years in length, and most are

shorter (Dirmeyer et al. 2016). The ICN covers 18 sites

in Illinois from 1983 to 2004 (Hollinger and Isard 1994).

Measurements were taken from 11 soil layers at depths

of 0–10, 10–30, 30–50, 50–70, 70–90, 90–110, 110–130,

130–150, 150–170, 170–190, and 190–200 cm, generally

once per month during the nongrowing season and twice

per month (or more, in a few locations) during the

growing season. Comparing LDAS and ICN datasets

(see appendix A) shows that the VIC-highres best

matched ICN, but that sparse ICN temporal sampling

impacts our analysis.

Finally, we constructed monthly averages of daily soil

moisture observations from sites that had at least 12

years of continuous monthly mean data to a depth of

40cm. These include Ashton (ARM) in Kansas, Mandan

(SCAN) inNorthDakota,Adam’sRanch (SCAN) inNew

Mexico, Happy Jack (SNOTEL) in Arizona, Long Valley

(SNOTEL) in Idaho, and Reynold’s Creek (SNOTEL) in

Idaho (see appendix A for more details, and Fig. A2 for

their locations) (Bond 2005; Schaefer and Paetzold 2001;

G. Schaefer et al. 2007). All in situ soil moisture observa-

tions were obtained from the International Soil Moisture

Network (Dorigo et al. 2011, 2013).

b. Determining soil moisture seasonal anomalies

For each dataset, we smoothed the monthly averages

with a 3-month runningmean; this reduces intraseasonal

variability but does not affect our results, as is illustrated

in Fig. S2.We then computed the 3-month runningmean

anomalies by removing the long-term monthly clima-

tology determined from the period of record. We tested

the impact of linearly detrending the 1950–2010 datasets

separately for each month but found the effects were

small. Also, the trend since 1950 has both anthropogenic

and natural sources (Solomon et al. 2011), and identifi-

cation of only the external component is beyond the

scope of this paper. Consequently, all analyses shown

are based on data that were not detrended.

To focus on larger spatial scales, time series were

computed by area averaging data within the boxes shown

in Fig. 6 (see also Fig. A1), representing four regions:

Illinois (also see appendix A), the Great Plains (GP),

the Great Basin (GB), and the southwestern United

States (SW).

c. Metrics

Most of the analysis in this paper involves the annual

cycle of correlation functions for soil moisture and

precipitation, determined separately for each 3-month

season by correlating that season’s anomalies with

values at lags ranging from 224 to 124 months. These

correlations were found both for a variable with itself

[autocorrelation (AC)] and between two different var-

iables [cross-correlation (CC)].

For comparison, note that the land surface integrates

forcing by random weather and climate variability.

Therefore, the simplest null hypothesis for soil moisture

variability is red noise or a first-order Markov process

(Amenu et al. 2005; Chikamoto et al. 2015; Delworth

and Manabe 1988; Schlosser and Milly 2002), whose

autocorrelation function r for a given lag t is

r(t)5 exp

�
2t

t
D

�
, (4)

where tD is the decorrelation (or e-folding) time scale,

also known as soil moisture memory. See appendix B for

more details of the AC and CC calculations and their

significance testing.

To develop ameasure for evaluating reemergence, we

first recall that the autocorrelation function in Fig. 2a

declined from one to near zero but then increased at

longer lags, reaching a maximum of 0.65 at a 14-month

lag. This behavior can be captured by defining the re-

currence time scale TR as the lag at which the autocor-

relation function reaches its first secondary maximum

(i.e., 14 months in Fig. 2a). Note that TR is only evalu-

ated when the correlation value at this secondary max-

imum (or the recurrence magnitude) is statistically

significant at the 95% level (appendix B), Importantly,

TR is a function of the starting season; that is, it measures

how long it takes until an anomaly from a given season

will recur. So, from Fig. 2b, for example, FMA soil

moisture anomalies recur after about TR 5 14 months

[in the second year April–June (AMJ) season], whereas

AMJ soil moisture anomalies take TR 5 12 months to

recur (also in AMJ). Since no information about sub-

surface soil moisture anomalies is used to compute TR,

we call it a measure of anomaly recurrence, not (nec-

essarily) reemergence.
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FIG. 6. (top) Root zone soil moisture standard deviation and (lower rows) lag corre-

lation from 3 to 18 months, for MAM base season, 1950–2010, in the (left) NCAR CLM

and (right) VIC-highres datasets. Only statistically significant autocorrelations (95%

level) are shown using color scale in rows 2–7. Numbers in each panel show the percent of

areal coverage of the significant autocorrelations. The outlines of boxes used to define the

regional time series (see text and also Fig. A2) are also shown.
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4. Results

a. Soil moisture memory and reemergence in North
America

Figure 6 shows maps of springtime [March–May

(MAM)] root zone soil moisture anomaly amplitude

(i.e., standard deviation) for the CLM and VIC-highres

datasets. [Fig. S3 shows results for the other three sea-

sons.] Qualitatively similar large-scale features exist in

both datasets, including pronounced maxima extending

along a north–south direction through the Great Plains

and in the southeast. However, clear differences in de-

tail exist; for example, CLM variability is stronger in the

northern Great Plains whereas VIC-highres variability

is stronger in the Great Basin. These differences do not

merely reflect the higher resolution effects (VIC-highres)

but can result from differences in forcing, model struc-

ture, and soil moisture parameterizations.

Interestingly, the largest anomalies are not always the

most persistent, as shown by the autocorrelation func-

tion maps for correlations between MAM anomalies

and anomalies 3 [June–August (JJA)], 6 [September–

November (SON)], 9 [December–February (DJF)], 12

(MAM 11), 15 (JJA 11), and 18 (SON 11) months

later (Fig. 6). For example, at 3-month lead, there is

substantially greater memory in the Great Basin and the

Southeast and less in the Great Plains and southwestern

United States. Despite this, at 9-month lead the Great

Basin andGreat Plains autocorrelation values are similar;

in fact, the 9-month lead Great Plains autocorrelation

increases considerably from its minimum at 6-month lead

(cf. Fig. 2a). Likewise, the Southwest U.S. autocorrela-

tion function reaches a secondary maximum at 18-month

lead. Similar results are apparent in maps of autocorre-

lation functions lagged from JJA and SON anomalies

(see Figs. S3a–c) except that these secondary maxima

occur at different leads.

Note that these maps are field significant at all lags;

that is, at least 5% of each map contains locally signifi-

cant correlation at the 95% threshold. However, at some

lags this is due to some statistically significant negative

correlations, which could reflect precipitation forcing

and not necessarily (at least not obviously) land effects.

To evaluate the potential for reemergence, we de-

termined TR (section 3c) from the CLM and VIC-

highres datasets. The resulting maps (Fig. 7), based on

the DJF, MAM, JJA, and SON seasons, have greater

coverage than in Fig. 6 for the same significance value,

which suggests that there is some uncertainty in the

precise time scale of recurrence.

Overall, recurrence of root zone soil moisture anom-

alies is widespread throughout North America, albeit

more pronounced in some regions and some seasons

than others. Despite their differing resolutions, the two

datasets share many notable features on larger scales.

For example, within the Great Plains region recurrence

values are quite similar in both areal extent and time

scale for all seasons except JJA, where in the CLM they

are more extensive and shifted westward relative to the

VIC-highres. Recurrence in the Great Basin is present

in both datasets but generally at much longer leads in the

VIC-highres than CLM. Results appear to be notably

dissimilar during JJA except in the Southwest where

both datasets have fairly similar values [i.e., TR is less

(greater) than 10 months in the eastern (western) part of

the box]. Also, in some areas (such as the southwestern

and northeasternUnited States), significant values ofTR

exist all or most of the year for both datasets, but their

time scales change by season in amanner consistent with

reemergence as described in Fig. 2b. For example, in the

Southwest region TR decreases by roughly 3-month in-

crements (going from red to blue) in each panel from

DJF through SON (Figs. 7a and 7d for CLM, and

Figs. 7e and 7h for VIC-highres). On the other hand,

some regions have significant values of TR only for

specific seasons. For example, in the Pacific coastal

states, TR seems primarily dependent upon winter soil

moisture anomalies (cf. Figs. 7a and 7e, and to a lesser

extent Figs. 7d and 7h), whereas TR is most related to

spring soil moisture in an area of the eastern Great

Plains (Figs. 7b and 7f) that shifts westward (Figs. 7c and

7g) and substantially enlarges for summer anomalies in

CLM. Further sensitivity of TR to time period and

dataset is shown in Fig. S4.

b. Regional soil moisture memory and reemergence

The variability statistics within the above datasets

appear to agree better on larger spatial scales. This is

also true for the other NLDAS2 products (Dirmeyer

et al. 2016). To investigate reemergence on these larger

scales, we constructed area-averaged time series for a

few selected regions as described in section 3. We then

determined both the root zone soil moisture and pre-

cipitation autocorrelation functions and the cross cor-

relation between the root zone soil moisture and

precipitation, all as a function of the annual cycle. Ad-

ditionally, we determined the cross correlation of root

zone soil moisture with the vertical profile of soil mois-

ture for each season of the year. In the following, we

show results using the CLM dataset since it has the most

detailed vertical structure; similar analysis performed

with the VIC-highres dataset yielded generally similar

results (see section 4c).

The annual cycle of the root zone soil moisture au-

tocorrelation function for the SW time series (Fig. 8a)

shows its memory more than doubled (from ;3 to ;8
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months) between spring and late fall. For autocorrela-

tion functions starting from summer and early fall

months, a secondary maximum extends diagonally from

an 8-month lag for SON to a 12-month lag for MJJ. That

is, significant autocorrelation values recur during the

subsequent summer, which is also consistent with TR

values in the southwestern United States (Figs. 7b,c).

This recurrence also continues for a second year, with

significant autocorrelation values at lags up to 24months

centered on late summer/early fall.

Soil moisture reemergence is apparent in the cross

correlation of the DJF (Fig. 8d), MAM (Fig. 8e), JJA

(Fig. 8f), or SON (Fig. 8g) root zone soil moisture

anomaly with soil moisture anomalies at all lead/lags

and depths. DJF andMAM root zone anomalies appear

to descend below 1-m depth over a period of several

months, reminiscent of Fig. 1. JJA (Fig. 8f) and SON

(Fig. 8g) root zone soil anomalies also descend but not as

deeply. DJF and MAM root zone soil moisture anom-

alies seem mostly correlated to future anomalies rather

than to past anomalies, whereas JJA and SON root zone

anomalies are significantly correlated to past anomalies

as well. These panels all show an apparent reemergence

signal in which the secondary autocorrelation function

maximum (Fig. 8a) occurs when higher deep layer soil

moisture memory reaches the surface from below.

FIG. 7. Recurrence time scale TR for root zone anomalous soil moisture in DJF, MAM, JJA, and SON base

seasons, 1950–2010. Only values of TR for which the recurrencemagnitude is significant at the 95% level are shown.

(left) TR maps determined from CLM data for (a) DJF, (b) MAM, (c) JJA, and (d) SON. (right) As in left, but for

VIC-highres for (e) DJF, (f) MAM, (g) JJA, and (h) SON. The outlines of boxes used to define the regional time

series are also shown.
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Precipitation has less memory than root zone soil

moisture (Fig. 8b), except in spring, and generally leads

soil moisture (Fig. 8c), both as expected. However,

November–January (NDJ) precipitation is also highly

correlated with root zone soil moisture anomalies

throughout the following winter and spring, even more

than precipitation during the intervening months. For

example, May–July (MJJ) root zone soil moisture is

slightly more correlated with precipitation six months

earlier (NDJ) than it is one month earlier (AMJ). This

FIG. 8. Soil moisture statistics for the SW time series in the CLMdataset, for the years 1950–2010.Annual cycle of

the autocorrelation function of (a) root zone soil moisture anomalies and (b) precipitation anomalies; (c) annual

cycle of precipitation–root zone soilmoisture cross correlation. In (c), positive lags refer to precipitation lagging soil

moisture (i.e., soil moisture leading precipitation) and negative lags refer to precipitation leading soil moisture. For

example, the location (4, DJF) indicates the correlation of DJF root zone soil moisture anomaly with the pre-

cipitation anomaly the following AMJ (i.e., 4 months later), while the location (26, MJJ) indicates the correlation

of MJJ root zone soil moisture anomaly with the precipitation anomaly the previous NDJ (i.e., 6 months earlier).

(d)–(g) Cross correlation between the root zone soil moisture anomaly [in (d)DJF, (e)MAM, (f) JJA, and (g) SON]

and the soil moisture anomaly as a function of depth and lead/lags. For example, in the SON panel the location

(5,20.5) indicates the correlation of SON root zone soil moisture anomaly with the soil moisture anomaly at depth

0.5m in the following year FMA season (i.e., 5 months later); the location (25,20.8) in theDJF panel indicates the

correlation of DJF root zone soil moisture anomaly with the soil moisture anomaly at depth 0.8m in the previous

year’s JAS season (i.e., 5 months earlier).
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could be consistent with NDJ precipitation forcing a soil

moisture anomaly that persists and/or reemerges in late

spring. Also, at some times when precipitation and root

zone soil moisture recurrences appear to coincide, the

cross-correlation function suggests that soil moisture

leads precipitation (cf. maxima in Figs. 8a–c).

In theGreat Plains (Fig. 9), soil moisture reemergence

appears to occur in springtime. Higher soil moisture

autocorrelation values at longer lags are fixed to the

early-to-middle spring season (Fig. 9a), with a secondary

maximum extending diagonally from about a 6-month

lag starting in JAS to about a 12-month lag starting in

MAM. The vertical correlation structure again shows

apparent descent of soil moisture anomalies, reaching a

greater depth than for the SW possibly because GP soil

conditions are comparatively more moist (Kumar et al.

2016). Springtime root zone soil moisture anomalies that

recur the following year in early spring (Fig. 9a) appear

driven by reemergence (Fig. 9e). Some signs of spring-

time reemergence also seem present for prior winter-

time anomalies (Fig. 9d), but they do not quite reach the

surface. There may also be a second-year reemergence

centered in winter (cf. Figs. 9d and 9e to the recurrence

at lags of 20–24 months in Fig. 9a). In contrast, there is

significant 2-yr anticorrelation for summertime (JJA)

soil moisture anomalies, also extending to deeper depth

(Fig. 9f), which could be consistent with ENSO forcing

(Yang et al. 2007). Note also that the weak precipitation

recurrence seen between spring months and JJA

(Fig. 9b) does not match the root zone soil moisture

FIG. 9. As in Fig. 8, but for the GP time series.
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recurrence (Fig. 9a). Moreover, while winter/early

spring root zone soil moisture anomalies are not strongly

correlated with the previous month’s precipitation, they

are correlated with precipitation from the previous fall

[e.g., October–December (OND); Fig. 9c]. This re-

lationship is consistent with the longer root zone mem-

ory seen at that time of the year (Figs. 9a and 9g) and

also with recurrence from the previous spring (e.g.,

MAM; Fig. 9c), consistent with reemergence of the

previous spring’s soil moisture anomalies in Fig. 9e.

Analysis for the Great Basin (Fig. S5) yields broadly

similar features, but the GB time series has much longer

soil moisture memory (;12 months) from late fall

through early spring months than during the summer

(;4 months), even as its precipitation has generally less

memory than the SW and GP regions. The reemergence

signal appears in the longer memory season (e.g., DJF

and SON). This longermemorymight be related to snow

and soil freezing processes; however, data uncertainty

due to poorly resolved topography in the CLM could

also be an issue (Lawrence et al. 2019, manuscript sub-

mitted to J. Adv. Model. Earth Syst.).

c. Sensitivity to dataset

1) OTHER LDAS DATASETS

Sensitivity of these results to the LSMused was assessed

by repeating the above analyses across the different LDAS

products (CLM, VIC-highres, Noah, Mosaic, GLEAM,

SMERGE, and MERRA-2) over the common 1980–2010

period. The resulting TR maps (Fig. S4) show recurrence

patterns that while broadly consistent have some fairly

obvious quantitative differences.

The root zone soil moisture autocorrelation functions

of the SW time series for all LDAS datasets and their

ensemblemean, for the years 1980–2010, are compared in

Fig. 10. Also shown is the VIC-highres results for 1950–

2010, which compares very well with the CLM for that

period (Fig. 8a). The overall details, in particular re-

currence magnitudes and time scales, are quite consistent

between the two time periods in the VIC-highres, and

across all LDAS datasets and the ensemble mean for

1980–2010. Soil moisture anomalies appear to reemerge

during late summer from prior anomalies more than a

year in advance. For example, DJF (AMJ) anomalies

have a secondary maximum 20 (16) months later, during

August–October (ASO). As in Fig. 8, reemergence ap-

pears to occur in two successive summer seasons: SON

soil moisture anomalies reemerge 8 months later, and

again 22–24 months later.

The results for the GP time series (Fig. 11) are qual-

itatively similar across the datasets but have less quan-

titative agreement than in Fig. 10. Greater differences

also exist between the post-1980 period and the full

period in both the VIC-highres and CLM (Fig. 9a) and

VIC-highres. The ensemble mean shows a stronger re-

emergence signal than the individual LDAS datasets,

although all show significant recurrence during Fall; for

example, February–April (FMA) soil moisture anoma-

lies recur 8 months later (in OND), whereas AMJ soil

moisture anomalies recur about 5–6 months later.

Analysis of the GB time series (Fig. S6) shows even

more discrepancies across the datasets, althoughmost of

the LDAS datasets have generally longer root zone soil

moisture memory starting from the late fall through

early spring months.

2) COMPARISON TO IN SITU DATA

Finally, we compare to the limited in situ records.

Figure 12 shows the Illinois root zone soil moisture au-

tocorrelation function for the ICN and LDAS datasets.

All show reemergence signals in their autocorrelation

functions, but they appear to agree less well than in

Fig. 11, perhaps because of the smaller area or shorter

data period. In fact, Noah shows significant negative

autocorrelations, although SMERGE, which uses the

Noah model to assimilate remote sensing–based surface

soil moisture observations, does not. Still, most of the

LDAS datasets agree better with each other than they

do with the ICN. These differences are obviously con-

cerning and could stem from deficiencies of the LDAS

datasets (e.g., Dirmeyer et al. 2016), at least in the Illi-

nois region (Xia et al. 2014). However, issues such as the

scale mismatch between climate model grids and local

ICN observations, the limited spatial and temporal

sampling of the ICN dataset itself, and spatial hetero-

geneity in soil characteristics could also be impacting

our correlation analysis. To test this possibility, we re-

sampled the VIC-highres dataset using the days and

1/168 grid boxes that best corresponded to the available

ICN data (no more than 18 locations and one to a few

instantaneous samples per month), and then took the

average over all the subsampled data to create the

‘‘VIC-highres-subsample’’ Illinois monthly time series.

This produced a much better match to the ICN than did

the original monthly mean data: the ICN and VIC-

highres-subsample time series are notably better corre-

lated, especially in the cold season (see appendix A),

and extrema within the autocorrelation functions based

on the VIC subsampled data and ICN (Fig. 12) also have

considerably better correspondence. Additionally, the

autocorrelation function and associated reemergence

show substantial variation across all the individual ICN

stations (Fig. S7), more often showing a stronger re-

emergence signal in the southern Illinois sites. Similar

issues impact evaluation of soil moisture reemergence in
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the vertical cross sections (see Figs. S8 and S9). Given

all of these considerations, it appears to be difficult to

draw firm conclusions from the ICN results, at least

quantitatively.

Figure 13 shows the root zone soil moisture autocor-

relation functions at six other sites with relatively long

records and with soil moisture measurements down to a

depth of at least 40 cm. These show that autocorrelation

structures with significant differences from simple ex-

ponential decay are prevalent across observation sites

throughout the United States. For example, three

(Mandan, Long Valley, and Reynold’s Creek) out of six

sites show robust reemergence signals. The remaining

three sites also show reemergence signals, but they are

weak and not statistically significant; two sites have

some negative correlations originating in winter that

FIG. 10. Annual cycle of root zone soil moisture anomaly autocorrelation function for the SW time series, in LDAS datasets. All figures

represent results from 1980 to 2010, except for the top row center, which shows 1950–2010. Results for the ensemble mean for 1980–2010

are shown in the second row left corner.
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might be due to precipitation forcing and/or data un-

certainty due to snow cover (Quiring et al. 2016). A

comparison of 13 years of LDAS data at Reynold’s

Creek site shows qualitatively similar results (e.g., the

reemergence signal in the summer and fall seasons;

Fig. S10). Results for the different sites seem to some-

what correspond to the LDAS results discussed above,

but again the limited sample sizes and localized nature

of the in situ measurements make a more detailed as-

sessment difficult.

d. Sensitivity to precipitation variability

One obvious issue raised by the precipitation correla-

tions in section 4b is whether root zone soil moisture re-

currence truly represents reemergence and other land

surface processes, or whether it is largely driven by

FIG. 11. As in Fig. 10, but showing the annual cycle of root zone soil moisture anomaly autocorrelation function for theGP time series, in

the LDAS datasets. All figures represent results from 1980 to 2010, except for the top row center, which shows 1950–2010. Results for the

ensemble mean for 1980–2010 are shown in the second row left corner.
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recurring atmospheric forcing (e.g., precipitation; Figs. 8b

and 9b). Similarly, significant negative soil moisture auto-

correlation could represent atmospheric rather than land

effects, either due to oceanic forcing or to sampling of

random weather events. On the other hand, while the ob-

served precipitation recurrence could be due to climate

forcing, Figs. 8c and 9c suggest it could also result from land

feedbacks—for example, from atmospheric coupling to a

root zone layer responding to soil moisture reemergence.

To initially explore these issues, we compared the VIC-

lowres soil moisture dataset to two corresponding VIC-

lowres datasets used in Livneh and Hoerling (2016), which

were created using observed atmospheric forcing as before

except 1) the precipitation variability was removed (i.e.,

precipitation was fixed to its annual cycle; ‘‘precip climo’’),

or 2) the temperature variability was removed (i.e., tem-

perature was fixed to its annual cycle; ‘‘temp climo’’). We

also compared to the CPC soil moisture dataset that, while

also forced with observations, had no vertical structure in

its LSM. Since the CPC dataset represents a 1.6-m-thick

surface layer, we compared to the top 1m (rather than top

0.4m) soil moisture from the VIC-lowres datasets; this

mainly tended to slightly lengthen overall memory and

thereby weaken reemergence strength relative to results

FIG. 12. Annual cycle of root zone soil moisture autocorrelation function for Illinois from all soil moisture dataset (cf. Table 1). Ensemble

mean results include all soil datasets shown here except for the subsampled version of the VIC-highres.
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using the top 0.4-m layer but had no other qualitative

impact.

Figure 14 shows the SW autocorrelation function in

the four different datasets. Removing observed pre-

cipitation variability yielded a reduction of the correla-

tion between fall and subsequent spring soil moisture,

which could be due to removing persistent cool season

ENSO forcing in the Southwest (note in Fig. 8b that the

fall/winter precipitation autocorrelation is significant for

lags of up to 5 months). Still, some soil moisture re-

currence remains, suggesting that it may not only be

forced by precipitation. Additionally, for lags greater

than about 6 months, recurrence was not reduced;

instead, it appears that the precipitation variability

may even have obscured a stronger summertime re-

emergence signal. Removing temperature variability, in

comparison, had minimal effect. It is interesting to note

that even the very simple CPC hydrology model

showed a similar recurrence pattern in the second year.

This supports climate forcing (precipitation and evapo-

rative demand) as a key driver compared with soil

moisture vertical discretization in the model, although it

does not rule out possible land–atmosphere feedbacks

related to reemergence.

FIG. 13. Annual cycle of root zone soil moisture autocorrelation for selected in situ sites (see text for more details,

and Fig. A2 for site locations).
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Figure 15 shows the same analysis for theGP time series.

Here we see no reduction in autocorrelation values when

precipitation variability is removed; in fact, since anomaly

recurrence at longer lags is amplified, it again appears that

precipitation variability may have partly obscured a

stronger reemergence signal that also clearly extended to a

second successive spring. Moreover, the recurrence signal

is notably weaker in the CPC dataset, especially in the

second year, further supporting the importance of GP re-

emergence. For the GB time series, in contrast, pre-

cipitation variability appears to drive the bulk of the

persistence and reemergence signals except for a weaker

signal during the warm season (see Fig. S11). However,

given the poorer agreement across the LDAS datasets for

the arid GB region, confidence in this result is low.

5. Concluding remarks

In this study, we aimed to investigate mechanisms of

long-term soil moisture memory, using a statistical (i.e.,

correlations-based) analysis of in situ observations

and LDAS datasets over North America. We defined

and identified for the first time a ‘‘soil moisture re-

emergence’’ process, which could lead to improved un-

derstanding of long-term drought and pluvial processes

and also be a source of soil moisture predictability on

seasonal to interannual (or possibly longer) time scales.

In the extratropical oceans, the memory time scale of

upper ocean thermal anomalies is on the order of a few

seasons. Yet, both observational and modeling studies

have shown that extratropical sea surface temperature

anomalies tend to recur from one winter to the next,

even as they do not typically persist during the in-

tervening summer, due to a process Alexander and

Deser (1995) called reemergence (Alexander and Deser

1995; Alexander et al. 1999; Namias and Born 1970). In

the ocean, reemergence occurs because wintertime

thermal anomalies are well mixed downward through-

out the deep winter mixed layer, become decoupled

from the surface when the mixed layer shallows in the

FIG. 14. Annual cycle of top 1-m soil moisture autocorrelation for the SW time series, from different VIC-lowres

datasets based on (a) observed forcing (cf. Fig. 11), (b) observed temperature and climatological precipitation forcing

(‘‘precip climo’’), and (c) climatological temperature and observed precipitation forcing (‘‘temp climo’’), for the years

1950–2010. (d) The corresponding analysis applied to the same region and period in the CPC (‘‘leaky bucket’’) dataset.

Note that unlike previous figures, these results are for the 0–1-m soil layer, except for CPC, which represents 0–1.6m.
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summer, and are re-entrained into the mixed layer as it

deepens the following winter. Soil moisture reemergence

is an analogous process because it too represents strong

seasonal modulation in the coupling between a surface

layer with short memory and a deeper layer with longer

memory, wherein 1) in the first season, surface forcing

creates an anomaly that propagates into the deep layer; 2)

in the next season, the layers are effectively decoupled so

that the anomaly decays at the surface but persists in the

deep layer; and 3) eventually, coupling is reestablished,

driving the surface back toward its prior anomaly. In the

ocean, this process has a clear signature in the seasonally

varying autocorrelation function: a secondary maximum

tilted diagonally so that it is tied to a fixed season rather

than a fixed lag (Newman et al. 2003). That a similar fea-

ture also appears in the root zone soil moisture autocor-

relation function (e.g., Figs. 2a, 8a, and 9a) is evidence for a

similar reemergence process for soil moisture.

Nevertheless, it is important to clearly distinguish

between our results and our interpretation of them,

since ultimately we believe this study raises more

questions than it answers. Primarily using long-term

(60 yr) LSM-based (LDAS) soil moisture datasets, we

have found statistically significant recurrence of root

zone soil moisture seasonal anomalies for lags as long as

2 years, which is considerably longer than the generally

accepted memory time scale of root zone anomalies.

This recurrence is usually strongly related to the sea-

sonal cycle, so it is often apparent only during isolated

seasons and not year-round. These results immediately

suggest that root zone soil moisture is likely predictable

on time scales measured in seasons and maybe even

years, not just months.

We interpret these results as evidence of a soil mois-

ture reemergence process, not only due to the diagonal

features in the autocorrelation function, but also be-

cause at the same time there appears to be propagation

of anomalies to the deeper soil in some seasons with the

later reemergence of these anomalies. This is our in-

terpretation of the vertical cross-section plots (Figs. 8d–g

FIG. 15. As in Fig. 14, but showing the annual cycle of top 1-m soil moisture autocorrelation for the GP time

series, from different VIC-lowres datasets based on (a) observed forcing (cf. Fig. 12), (b) observed temperature and

climatological precipitation forcing (‘‘precip climo’’), and (c) climatological temperature and observed pre-

cipitation forcing (‘‘temp climo’’), for the years 1950–2010. (d) The corresponding analysis applied to the same

region and period in the CPC (‘‘leaky bucket’’) dataset.
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and 9d–g) where the recurrence of root zone soil mois-

ture anomalies (corresponding to Figs. 8a and 9a) was

better correlated with prior deep layer anomalies than to

either the root zone anomalies of the previous season or

to atmospheric forcing (i.e., precipitation). Experiments

with the lower-resolution version of the VIC model also

suggest that atmospheric variations alone cannot ex-

plain the observed recurrence.

We hypothesized two possible mechanisms: 1) the

demand-driven hypothesis and 2) the anomaly propa-

gation hypothesis. Data presented here are consistent

with both hypotheses. Additional observations and nu-

merical experiments are needed to quantify their relative

contributions. For example, data from the multidecadal

drought period may clarify the role of the anomaly prop-

agation hypothesis. Similarly, numerical experiments with

and without deep layer soil moisture memory and its im-

pacts on soil moisture anomalies during the summer may

clarify the role of the demand-driven hypothesis.

One of the underappreciated implications of oceanic

reemergence is that extratropical decadal variability and

predictability may have pronounced seasonality. That is, a

decadal signal may only exist in one particular season, not

necessarily year-round. This may also be true for pre-

dictability stemming from soil moisture reemergence.

Also, note that much of the PDO’s variability results from

reemergence acting to redden the ENSO signal in the

North Pacific (Newman et al. 2016). It is an interesting

question whether soil moisture reemergence might act

similarly to redden the ENSO signal over land, and if so

whether this is why, as previously suggested by Newman

et al. (2003), there is an apparent pronounced PDO signal

in North American drought (Barlow et al. 2001) and in

climate proxies such as tree rings (Biondi et al. 2001;

D’Arrigo and Wilson 2006).

In summary, while much of the evidence put forth

here in support of soil moisture reemergence is

compelling, it is also largely circumstantial due pri-

marily to the lack of direct observations needed, ICN

data notwithstanding—hence the caveat ‘‘potential re-

emergence’’ in the paper title. Our statistical analysis

suggests a new and interesting physical process, but

multiple questions remain: the extent to which the pro-

cess exists, how consistent it is with our physical hy-

potheses, and how quantitatively important it is to the

land–atmosphere climate system. Since our analysis was

limited to relatively shorter in situ and only somewhat

longer model-based datasets, its considerable quantita-

tive uncertainty could reflect sampling issues, meaning

that longer data records (which may be unavailable)

are required to isolate reemergence from weather and

climate variability and land–atmosphere coupling.

However, we also cannot exclude the possibility that

reemergence acts quite differently in the current gen-

eration of LSMs than it does in nature. Many potentially

interacting but largely undetermined factors can also

affect soil moisture reemergence, including precipita-

tion variability and persistence, land–atmosphere cou-

pling, and the distribution of soil types both horizontally

and vertically. LSM representation of reemergence

could be additionally complicated by factors including

(but not limited to) vertical discretization and soil

moisture model parameterizations, and by how well

they represent seasonal and regional variations of all the

above variables. For example, Livneh et al. (2015a)

found that the same LSM produced different portrayals

of longmemory processes like drought when driven with

different underlying soil survey data. In particular a

rigorous sensitivity analysis of the role of model pa-

rameter settings and layer discretization would be

needed to assert a more quantitative measure of re-

emergence beyond the qualitative assessment presented

here. The effects of land use land cover type, interactive

vegetation phenology, and hydraulic redistribution by

the plant root system could also be relevant. Finally,

while we ruled out significant impacts on our results by a

seasonally varying linear trend, more complex effects of

anthropogenic change are still possible. Addressing all

of these questions will require additional analysis of

related hydrological observations and a systematic ex-

perimental framework ranging from simple multivariate

autoregressive models to stand-alone land models and

complex coupled climate models.
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APPENDIX A

Station Data Processing

a. Processing of ICN data

At each of 18 sites throughout Illinois (see Fig. A1),

ICN observations were taken at least twice per month

during the growing season, which we averaged together,

and once per month otherwise for the years 1983–2004

(although irregular sampling meant that some months

were skipped at some stations in some years). These

measurements were then taken to represent themonthly

averages at each site. Each soil layer was processed

separately; if a layer was missing it was filled in with
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weighted linear interpolation, but if more than one layer

was missing from the root zone and two layers were

missing from the deep layer the site was recorded as

missing for that month. Then, we determined the root

zone (0–0.4m) soil moisture at each site for each month,

and subsequently averaged the monthly root zone soil

moisture across the available sites each month to rep-

resent the Illinois average root zone soil moisture total

field. ICN soil moisture data were available from 1983 to

2004 for most of the stations, but the first two years were

excluded due to outliers that were more than four

standard deviations away from the mean of all data (Xia

et al. 2014).

Figure A2 shows the Illinois-mean seasonal anomaly

correlations of ICN soil moisture data with the LDAS

datasets for the root zone (0–0.4m). All LDAS anom-

alies are generally better correlated with ICN anomalies

during the growing season (spring and summer) than the

FIG. A1. Locations of station data and the boundaries for the three regional indexes used in

this study.

FIG. A2. Correlation of ICN mean root zone soil moisture anomaly with corresponding

anomaly from each soil moisture dataset averagedwithin Illinois, as a function of season for the

years 1985–2004. Note that the CPC dataset represents soil moisture in the 0–1.6-m layer.

Ensemblemean results here include all datasets except CPC, and the subsampled version of the

VIC-highres. Three instances of VIC are included to illustrate differences in model scale

configuration, as well as the importance of subsampling daily model outputs on the sampling

dates and location of the ICN stations.
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winter seasons, as was earlier found by Xia et al. (2014).

For example, VIC-highres shows an anomaly correla-

tion of;0.9 from AMJ through ASO seasons but drops

below 0.5 for DJF through FMA seasons. VIC-highres

anomalies generally correspond better with the ICN

compared to other LDAS datasets for most of the year.

To investigate the issue of sparse and irregular tem-

poral frequency of ICN observations, we subsampled

VIC-highres soil moisture data to the nearest location

(1/168 grid box) and day of observation at the respective

stations before taking the area andmonthly average; the

number of stations each month varied consistent with

ICN data availability. This time series, called the VIC-

highres-subsample, has notably higher correlations with

the ICNmonthly time series, especially throughoutmost

of the cold season (Fig. A2). This suggests that the effect

of sampling (primarily temporal; not shown) at the ICN

sites is nontrivial, and likewise that LDAS datasets (at

least the VIC-highres, at these locations, for 3-month

averages) may better represent in situ data than the

comparison in Xia et al. (2014) suggests. Spatial het-

erogeneity in soil characteristics may likewise be an is-

sue. If all this is the case, it may even be that the full

monthly averaged Illinois-meanVIC-highres time series

is as good or even better a representation of soil mois-

ture over the 1982–2015 period than the ICN time series.

b. Processing of other station data

We also examined raw station data from sites other

than the ICN. Data were downloaded from the ISMN

website (http://ismn.geo.tuwien.ac.at), selected in or

near the predefined regions (GP, SW, and GB). We

found six stations (2 from SCAN, 3 from SNOTEL, and

1 from ARM) that all have a record length of at least 12

years and soil moisture observations down to at least

0.5m. Some other stations or networks that also have

relatively long records contained too much missing data

(e.g., the SNOTEL station SILVIES) or were systemati-

cally missing certain months of the year (e.g., the IOWA

network) tomake for a representative determination of the

seasonal cycle of the autocorrelation function.

APPENDIX B

Autocorrelation Function and Significance Testing

The autocorrelation function was determined sepa-

rately for each month by correlating the soil moisture

anomalies at time 5 0 with values at lags and leads

ranging from224months to124months. This was done

both for the same soil layer [autocorrelation (AC)] and

between two different soil layers [cross correlation

(CC)]. Let us suppose that P
y5n,m512,l511

y51,m51,l51
Xy,m,l is the

seasonal anomalies time series where subscript y rep-

resents year (1–n), m represents season (1–12), and l

represents soil layer; then the correlation functions are

given as below:

AC
m,l,d

5 correl

 
P
n

y51

X
y,m,l

,P
n

y51

X
y,m1d,l
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!
, (B2)

where ACm,l,d is autocorrelations for season m, layer l,

and at lead/lag d, which ranges from224 to 24. The term

CCm,l1l2,d is the cross correlation between layer l1 and l2
for season m and lead/lag d; Correl is the linear

correlation coefficient between the two series. For

m1 d. 12, Xy,m1d,l 5 Xy11,m1d212,l, and m 1 d , 0,

Xy,m1d,l 5 Xy21,m1d112,l. We determined the t statistic

for the regression coefficient and converted the t sta-

tistic into the statistical probabilities (p value). Thus,

every year contributes one sample in the given time

series, (e.g., P
n

y51Xy,m,l). We determined degrees of

freedom by accounting for serial autocorrelation in the

time series and accordingly reducing the effective

sample size using the NCL function equiv_sample_size

(NCL 2018). For example, the number of degrees of

freedom for 20 years of Illinois seasonal anomalies was

16. We label AC or CC values with a p value# 0.05 for

two-tailed test as statistically significant.

Additionally, for every significant AC and CC value

we tested whether it represented a linear relationship,

by finding the linear, quadratic, and cubic least squares

fits to the data used to determine the correlation value

(examples are shown in Fig. S12). The Bayesian in-

formation criterion (BIC) test was then applied in each

case to select which of these three curves was the best

model of the data scatterplot. We found that in 94% of

the values tested, the linear fit was the best.
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